
Lit Review: Domain Specific Language Teaching Tool
Ahmed Ghoor

Department of Computer Science,
University of Cape Town,

Private Bag X3, Rondebosch, 7701,
South Africa

ghrahm004@myuct.ac.za

ABSTRACT
A proposed research project is looking to create and assess a
simple interactive tool for developing a Domain Specific
Language as part of the process of learning Compiler Theory. This
review investigates similar research on different approaches to
incorporating the practical component in the teaching of compiler
theory and analyses them based on the latest relevant concepts in
Computer Science Education to identify gaps in current solutions.

Keywords
Computer Science Education, Interactive Tools, Domain Specific
Languages, Compiler Theory

1. INTRODUCTION
1.1 What is the project
A proposed research project is looking to create and assess a
simple interactive tool for developing a Domain Specific
Language as part of the process of learning Compiler Theory. The
development of Domain Specific Languages is not a new
approach to teaching compiler theory and several tools for
automating much of the process are already available [1]. The use
of interactive tools to assist in the learning process is also not new
in the field of Computer Science Education or even Compiler
Theory Education [2]. By drawing on established educational
theory, and the current research completed in these fields, this
project will look to find the gap and address it, potentially
building on an existing implementation.

1.2 Why is it important
Compiler Theory is arguably a very important topic in Computer
Science Education. It teaches students how high-level source code
gets translated, through a pipeline of processes, to low-level
machine code that computers can understand and execute.

1.2.1 Challenges
Despite the importance of the subject, there are some challenges
that come with teaching compiler theory.
Dealing with low-level translation process concepts can be
complicated, and some of the theory is quite abstract [3].
Simplified practical problems that help students actively engage
with the material need to be created to assist students’
understanding of these concepts. As we will show later in the
paper, coming up with this practical problem is the subject of
much debate.
Secondly, students are not always interested in the subject. The
theory does not seem to have immediate or obvious market
relevance. In other words, the likelihood that they would be using
this skill set in a job seems low to students. [1]

1.3 Where does this research fit
The development of a Domain Specific Language (DSL) teaching
tool aims to address these challenges.
By providing an interactive educational tool, we can potentially
facilitate an engaging visual learning experience that simplifies
the process of understanding and applying Compiler Theory
concepts [3].
And by taking the approach of teaching Compiler theory using
DSLs, we can potentially highlight examples of the practical
relevance of Compiler Theory in the industry, thereby increasing
students' interest in the subject [1].
We will expand upon both of the above arguments later in the
paper.

1.4 Where does this review fit
This review looks to investigate similar research on different
approaches to incorporating the practical component in the
teaching compiler theory and analysing them based on the latest
relevant concepts in Computer Science Education. This is
necessary to identify gaps in current solutions. The review will
also explore methods of evaluating educational tools so that they
can be applied to the final DSL Tool. Doing this before the tool is
built may help mitigate bias.

1.5 Different subsections of this review
Each sub-section plays an important role in laying the
groundwork for the development of an effective DSL teaching
tool for Compiler Theory.

1.5.1 Computer Science Education
This review will start by investigating the relevant pedagogical
theories and best practices in Computer Science Education, with a
particular focus on the use of interactive techniques to enhance
students' understanding of complex concepts. This is essential for
designing a DSL teaching tool that aligns with established
pedagogy and effectively helps achieve the required learning
outcomes.

1.5.2 Compiler Theory
This next sub-section will look to explore an overview of the key
concepts taught in Compiler Theory courses, with a focus on
Domain Specific Languages and the tools used to build them.
Understanding the course content is necessary for ensuring that
the DSL Teaching Tool is able to bridge the gap between the
complex abstract theory and the practical component that attempts
to help facilitate the understanding of that theory.

1.5.3 Teaching Compiler Theory
The review will then examine the different approaches that have
been taken to incorporate a practical component in the teaching of



the Compiler Theory above. This will include a special focus on
the past use of domain-specific languages and interactive teaching
tools. By analyzing the different approaches, we can identify the
most effective and relevant strategies that could be incorporated
into the DSL teaching tool.

1.5.4 Creating and Assessing a DSL Teaching Tool
This section draws on the above literature to highlight potential
key considerations and success factors for the DSL Tool. It also
explores methods for evaluating teaching tools that can be used to
assess the proposed DSL Teaching Tool once it is completed.

2. Computer Science Education (CSE)
In the field of Computer Science Education (CSE), there is a lot of
literature that could potentially be relevant and applicable to
teaching Compiler Theory. Additionally, numerous general
educational theories and approaches may also have implications
for CSE. However, given that the primary focus of this paper is
not to provide an exhaustive literature review on the philosophies
of CSE, we have limited our investigation to concepts that may be
particularly pertinent to the teaching of Compiler Theory. Some of
these concepts will be referenced later in the paper, which will
explicitly illustrate their relevance.

2.1 Key Theories in CSE
2.1.1 Constructivism
A learning theory that emphasizes the active role of the learner in
constructing their own understanding of the subject matter.
Students don’t just passively receive information. Rather, they
tend to build their own understanding of new knowledge upon
pre-existing knowledge by constructing mental models.[4]

2.1.2 Cognitive Load Theory
This theory focuses on managing the cognitive demands placed on
students during the learning process. Based on its tenet that
“human working memory is limited”[5], this theory justifies
breaking down complex concepts into smaller, more manageable
parts, in a way that reduces extraneous cognitive load and allows
students to gradually build the complete skill.[6]

2.1.3 Problem-Based Learning
A teaching approach that emphasizes active learning through
solving real-world problems. This might involve presenting
students with practical design challenges and encouraging them to
work together to develop solutions. This can help students to
develop critical thinking skills, in addition to a deeper
understanding of the concepts.[7]

2.1.4 Zone of Proximal Development
This concept, introduced by Lev Vygotsky, refers to the difference
between what a learner can do without help and what they can
achieve with guidance and support [8]. For a teaching tool, this
might involve providing students with interactive suggestions, and
hints, to help them bridge the gap between their current
understanding and the problem that they’re trying to solve as part
of the learning process.

2.1.5 Active Learning
Active learning is an approach that emphasizes the importance of
engaging students in the learning process, rather than passively
transmitting the information. Active learning can involve group
discussion, tracing algorithms, coding assignments and what-if
scenarios [9]. Interactive tools that provide immediate feedback

and allow students to explore the impact of changes to the system
have been shown to assist with active learning [10].

2.2 Interactive Techniques in CSE
Using interaction can be powerful for enhancing students'
understanding of complex concepts in computer science. Below is
a review of some effective interaction techniques.

2.2.1 Immediate feedback
Interactive tools can provide immediate feedback on students'
work, allowing them to quickly identify and correct errors, play
with different scenarios, and develop a clearer understanding of
the consequences of their actions [11].

2.2.2 Gamification
Integrating game-like elements into interactive tools can make
learning more engaging and enjoyable for students [12]. This can
help to motivate students and encourage them to spend more time
actively working with the material [1].

2.2.3 Visualizations
Interactive visualization techniques can play a big role in
facilitating students' understanding of complex concepts in
computer science. It can help bridge the gap between practical
coding assignments and the theory taught in class [3]. By
providing interactive visual representations of the code’s data
structures, and algorithms, visualization tools can help students to
build mental models and make connections between different
theoretical concepts [4].

3. Compiler Theory
The subject of Compiler Theory explains how high-level source
code gets translated, through a pipeline of processes, to low-level
machine code that computers can understand and execute. There
are various stages in this pipeline, namely: Lexical Analysis,
Syntax Analysis, Semantic Analysis, Intermediate Code
Generator, Optimization and Code Generation [13].
This project will narrow its focus on creating a DSL Teaching
Tool for the front end of the pipeline; the Lexical, Syntax and
Semantic Analysis.

3.1 The Compilation Pipeline
3.1.1 Lexical Analysis
Lexical analysis is carried out by a lexical analyzer. The analyser
takes in the stream of characters in a source program and then
breaks it up into a stream of tokens. Based on the string pattern,
usually defined by Regular Expressions, each token is assigned a
type eg Identifier, Integer, Operator etc. [14]
Example
Character Input Stream: num = 10
Output of Lexical Analyzer: <id, “num”>, <op, “=”>, <int, “10”>
, where each <...> represents an individual token.

3.1.2 Syntax Analysis
Also known as parsing, the Syntax Analyser ensures that the
program conforms to a set of grammar rules by taking in a series
of tokens and outputting a parse and abstract syntax tree as in
Figure 1.[14]
Example
Input Stream: <int, “4”>,<op,“+”>,<int,“3”>,<op,“+”>, <int,“2”>
Abstract Syntact Tree:



Figure 1
A program could pass the Lexical Analyser by having valid
tokens, but could still not be a valid program. The Syntax
Analyser, or Parser, ensures that the series of tokens in the
program is valid[13].

3.1.3 Semantic Analysis
Before the Abstract Syntax Tree (AST) can be sent to the next
phase, the Semantic Analyser ensures that there are no type or
context errors using a Symbol Table. For example, ensuring that
variables are defined before they are used, that expressions are
type-consistent, or that an array reference is in bounds, amongst
other checks.
Using the Symbol Table to store the meaning of
Symbols/Identifiers, the abstract syntax tree is traversed to
perform these checks. [13]
The AST is then sent to the intermediate code generator which
converts it for the backend of the Compiler. That aspect of
Compiler Theory, however, is not in the scope of this project.
Note that some textbooks don’t describe Semantic Analysis as a
separate step, but rather include it in the previous step or consider
it as a check that happens in parallel [14].

3.2 Domain Specific Languages
3.2.1 What are Domain Specific Languages?
Domain Specific Languages (DSLs) are programming languages
that are tailored to a specific application domain or problem area,
providing special constructs, abstractions, and syntax to express
solutions concisely and efficiently [15].

In contrast, General Purpose Languages (GPLs) are designed to be
versatile and applicable to a wide range of application domains
and problem types. However, while GPLs offer this broad
flexibility, they may lack the features and optimizations that can
make DSLs more user-friendly and efficient for specific tasks
[15].

Examples of Domain-Specific Languages include SQL for
database management [16], HTML for web design [17] and
MATLAB for mathematical computing[18]. These languages are
tailored to their respective domains, offering specialized features
and abstractions that make them well-suited to solving problems
within those areas.

3.2.2 Tools for creating Domain Specific Languages
Creating DSLs can be a challenging task, but there are several
tools and frameworks available to help developers in this process.
These tools vary in terms of features, functionality, and target
languages.

3.2.2.1 Traditional Tools:

Lex and Yacc: Lex and Yacc are well-known tools for compiler
construction published in 1975 [19][20] in the C programming
language. Lex creates a lexical analyzer, while Yacc creates a
parser. Their popular equivalents are the open-sourced Flex and

GNU Bison [21], respectively. Working together, these tools can
help build compilers by generating code for the lexical analysis
and syntax analysis phases, respectively.

ANTLR: ANTLR (Another Tool for Language Recognition) is a
flexible parser generator that supports various languages,
including Java, C, Python and Go [22]. ANTLR can generate both
lexical analyzers and parsers which can automatically generate
parse trees. The tool also has a useful graphical interface for
visualizing parse trees and debugging grammars, shown in Figure
2 below.

Figure 2

3.2.2.2 Modern Tools:

JetBrains MPS (Meta-Programming System): JetBrains MPS is an
open-source language workbench that lets developers develop
new Domain Specific or General Purpose Languages [23]. It's
built on a projectional/structural editor which means that it does
not limit developers to text editing but makes it possible to
visualize and edit a representation of the Abstract Syntax Tree
[24]. It also assists in developing non-textual domain-specific
notation for your language, including math notations and
diagrams. This arguably simplifies the DSL design, although its
unconventionality might make it difficult for developers to get
used to.

Xtext: Xtext is an open-source parser generator developed under
the Eclipse Modelling Project, and can integrate very well with
the Eclipse Modelling ecosystem [25]. A helpful feature of Xtext
is that it can generate a serializer and smart editor along with the
parser, without any additional code if customization is not
necessary.

Ply for Python: Ply (Python Lex-Yacc) is a lexer and parser
generator for Python. It is essentially a python implementation of
Lex and Yacc that simplifies the code generation step [13]. Ply
provides a familiar and simple interface for Python developers to
create compilers and interpreters for custom languages. Ply also
has helpful features, like error reporting, precedence rules, and
support for LR parsings.

4. Teaching Compiler Theory
All approaches to teaching Compiler Theory strive to find the
right balance between teaching theoretical concepts and assisting
that understanding through practical assignments. Theoretical
concepts are essential for understanding the underlying principles



of compiler design and implementation, and are largely the same
across course designs [2].
The method with which the practical element is incorporated,
however, is the subject of much debate. Practical assignments help
solidify these concepts by providing students an opportunity to
actively learn by applying the abstract theory on a problem, as
well as help students see its practical relevance of the theory [1].

4.1 Different Approaches
4.1.1 Case-Based Problem
Kundra and Sureka argued for using a case-based teaching
approach, presenting students with specific examples or case
studies of real-world compiler design problems [26]. This
approach encourages students to think critically about the
challenges and trade-offs involved in designing and implementing
compilers in the real world and arguably helps make learning
easier and more interesting for students. An example presented in
the paper was the use of lexical analysis to develop a program that
can detect spam emails.

4.1.2 A Research Activity
Another approach is to assign aspects of the theory as a practical
research activity. Moreno-Seco and Forcada drew on the
Constructivist theory of education to formulate this method [27].
It essentially looks at students as novice researchers, that need to
rapidly learn what has been done in a field in order to find the
gaps and solve a problem. This also applies the problem-based
educational approach by encouraging the learning of new
concepts and theories only after the problem that motivated them
is understood.

4.1.3 Mini versions of existing GPLs
A common approach to the practical part of Compiler Theory
courses is to have students implement a compiler for a simplified
or limited version of an existing General Purpose Language
(GPL), such as C or Pascall. Terry [28] developed CLANG, a
simplified subset of Pascal, and Rakic et al [29] developed a mini
C language, in a similar fashion. These mini-language projects
allow students to apply theoretical concepts to a mini version of a
general language that still contains the most important
characteristics of the programming language.

4.1.4 Using Domain Specific Languages
An approach that this project will draw on is the use of Domain
Specific Languages. Henry[2] presents a strong argument for
using domain-specific languages (DSLs) for the practical
component of Compiler Theory Courses. This approach involves
having students design and implement compilers for languages
tailored to specific domains, such as scientific computing or
embedded systems.
This can help students see the relevance of learning compiler
theory [2] as they are learning how to produce working versions
of domain-specific programming languages that can address gaps,
as opposed to reinventing the wheel by developing smaller
versions of existing languages.
It could also help students develop a deeper understanding of the
unique challenges and requirements that could be present in
different application domains and learn how to adapt compiler
design principles to meet those needs. Shatalin et al. [23] pointed
out that it is rare that developers have both the knowledge of
Compiler Theory and domain knowledge to know when to use
Domain Specific Languages. This could help address that gap.

4.2 Use of Interactive Tools
In order to address the challenge of helping students understand
abstract concepts and complex algorithms in Compiler Theory,
several attempts have been made to develop interactive simulators
to visualise aspects of Compiler Theory. Stamenkvic et al. [2]
surveyed several different simulators and evaluated them based on
their characteristics and features, as well as the amount of
Compiler Theory topics covered.
We will review the best interactive simulators described in that
paper according to the mentioned criteria, including a solution
developed by the same authors the following year.

4.2.1 LISA
LISA, developed by Mernik and Zumer [10], is an advanced
interactive multipurpose graphical simulator built using Java for
Desktops.
It covered the highest percentage of Compiler Theory Topics, at
46.2%. The closest was JFLAP at 38.8%, and most other
simulators covered less than 30% of the topics. What is further
notable for the purposes of our project, is that the only topics that
LISA doesn’t cover at least partially, are the topics not in the
scope of this paper.
LISA illustrates Lexical Analysis animating the deterministic
finite-state automata, Syntax Analysis with a Syntax Tree and the
check for Semantic rules with a Semantic tres that highlights
dependencies. Examples of his are shown in Figure 3.

Figure 3

4.2.2 JFLAP
JFLAP is also an advanced interactive multipurpose graphical
simulator built using Java for Desktops [2].
It covers 38% of the topics, with a focus on defining automata and
grammar [2]. Notable distinct features include a graphic editor for
drawing many types of automata and, unlike LISA, JFLAP has the
ability to convert nondeterministic finite automata into
deterministic automata and transform automata into appropriate
regular grammar [30].
Figure 4 shows some of the options offered by JFLAP



Figure 4 [57]

4.2.3 Stamenković and Jovanović
Based on their survey and evaluation above, Stamenkovic and
Jovanovic published a paper on two alternative interactive
graphical simulation tools to visualise the theory underpinning
lexical and syntax analysis [3]. One is a web-based tool,
specifically for lexical analysis, and the other is coded using Java,
for desktops.
The solution does not seem to require coding. Rather the
visualisation provides textboxes or objects, with a lot of guidance,
to input information. It then outputs the information, either using
easy-to-understand text or by visualizing the relevant data
structures.
The programs allow users to:

● Easily input regular definitions and see the implications
of those definitions on an input sentence/string.

● Define automata with a drawing or an automatic
transition table, and see the implications on an input
sentence/string.

● Transform a regular expression into a DFA or NFA,
simulated in steps or using Thompson’s algorithm.

● Simulate the construction of the syntax tree for a
particular regular expression.

5. Discussion of Findings
The need for an interactive Domain Specific Teaching Tool can be
justified both by the arguments that the concepts are perceived to
be complex and irrelevant by students, and by the amount of
research that has been done, and is still being done, in Universities
all over the world.
There have been several implementations of an interactive
graphical compiler simulator. However, looking at similar
systems, we can see some potential gaps.
None of the multipurpose implementations, that cover a
substantial amount of theory, are built for multiple platforms. This
makes them difficult to use across all the platforms that students
use. A web app or an app for multiple platforms using tools like
Flutter, with as many features as LISA, could be a potential
solution.
Secondly, while the implementations of the simulators illustrate
the underlying data structures quite clearly, there is rarely any
actual coding required. This level of abstraction might make the
gap between the interactive simulators and using a real-world
parser too great. A middle ground between compilers like
ANTLR, which allow users to code and visualise some data

structures, and the educational and simulation features of the
current interactive teaching tool might be a solution to this.
The implementations apply two of the reviewed educational
interactive techniques very well, Immediate Feedback and
Visualizations. However, none of the implementations applied
Gamification. This might be a helpful inclusion, in the form of
points for completing quiz problems in the system or for logging
in daily.
In the Computer Science Education Theory reviewed,
collaboration, group work and discussions seemed to be a
recurring theme. The popular coding education app, SoloLearn,
achieves this by allowing users to comment and upvote comments
on every short lesson and assessment [12]. This allows for
common misunderstandings and mistakes to be addressed at every
step of the learning process and allows users to interact with other
students. Comment upvotes can also be integrated into the
gamified aspect of the program to encourage students to provide
helpful comments that other users can benefit from.

6. Project Evaluation Criteria
The method of evaluation could be more robust to that of
Stamenković et al. above since they were constrained by the task
of having to evaluate several tools and not having as many groups
of students. They were, hence, forced to evaluate the tools based
on a reasonable assumption of what desirable factors would be
[2]. This project could include that as part of the evaluation but,
since we will only be evaluating our tool, can also attempt to look
for a causal relationship between the teaching tool and the
learning experience of students.
To do this, we could assess the counterfactual impact that it has on
the learning experience. This would require a control group, as
they do in Randomized Control Trials [31]. A good control group
would have the same lecturer, theory, and assessment, but would
not have access to the DSL Tool. Data for the two groups can be
collected in the following ways:

6.1 Pre- and post-test assessments
Conduct assessments before and after using the DSL teaching tool
to measure students' knowledge and understanding of Compiler
Theory concepts, comparing the results to determine the impact of
the tool on learning outcomes.

6.2 Student feedback and surveys
Collect feedback from students through surveys or focus groups to
gather insights into their experiences and perceptions of the
learning experience. This will also identify areas for improvement
and potential enhancements of the DSL Tool.

6.3 Observations and classroom assessments
Observe students' interactions during class sessions, assessing
their engagement, problem-solving abilities, and collaboration
skills, as well as their ability to apply Compiler Theory concepts
in practice.

6.4 Longitudinal studies
Track students' progress and performance over time, analyzing the
long-term effects of using the DSL teaching tool on their
understanding and application of Compiler Theory concepts [32].
This could be done by observing differences in students’
understanding of a second compiler course if the University offers
one.



7. Conclusion
The literature review revealed and expanded upon the importance
of incorporating interactive techniques into education tools.
Reviewing the compiler theory covered in courses and past
approaches to teaching it, the teaching of Compiler Theory seems
to be no exception to this recommendation.
The review also highlighted the benefits of past uses of Domain
Specific Languages and interactive tools to teach compiler
Theory. Although there have been many past implementations, the
review also revealed some gaps that the project could be able to
fill.
Limitations to this review include potentially missing novel
well-implemented approaches to creating an interactive teaching
tool for compiler theory, or educational theory that could be
incorporated.

8. REFERENCES

[1] Henry, T.R. (2005) “Teaching compiler construction using a
domain specific language,” Proceedings of the 36th
SIGCSE technical symposium on Computer science
education [Preprint].

[2] Stamenković, S., Jovanović, N. and Chakraborty, P. (2020)
“Evaluation of simulation systems suitable for teaching
compiler construction courses,” Computer Applications in
Engineering Education, 28(3), pp. 606–625. 3[1]
Stamenkovia, S. and Jovanovia, N. (2021) “Improving
participation and learning of compiler theory using
educational simulators,” 2021 25th International
Conference on Information Technology (IT) [Preprint].

[4] Ben-Ari, M. (1998) “Constructivism in computer science
education,” ACM SIGCSE Bulletin, 30(1), pp. 257–261.

[5] Wilson, B.G. and Cole, P. (1996) “Cognitive teaching
models,” In D. H. Jonassen (Ed.), Handbook of research in
instructional technology , pp. 601–621.

[6] Shaffer, D., Doubé, W. and Tuovinen, J. (2003) “Applying
Cognitive load theory to computer science education,”
Annual Workshop of the Psychology of Programming
Interest Group, pp. 333–346. 7[30] Hmelo-Silver, C.E.
(2004) “Problem-based learning: What and how do students
learn?,” Educational Psychology Review, 16(3), pp.
235–266. 8[33] Anderson, N. and Gegg-Harrison, T. (2013)
“Learning computer science in the ‘comfort zone of
proximal development,’” Proceeding of the 44th ACM
technical symposium on Computer science education
[Preprint]. Available at:
https://doi.org/10.1145/2445196.2445344.

[9] McConnell, J.J. (1996) “Active learning and its use in
computer science,” Proceedings of the 1st conference on
Integrating technology into computer science education -
ITiCSE '96 [Preprint]. 10[37] Mernik, M. and Zumer, V.
(2003) “An educational tool for teaching compiler
construction,” IEEE Transactions on Education, 46(1), pp.
61–68.

[11] Corbett, A.T. and Anderson, J.R., 2001, March. Locus of
feedback control in computer-based tutoring: Impact on
learning rate, achievement and attitudes. In Proceedings of
the SIGCHI conference on Human factors in computing
systems (pp. 245-252)

[12] Putra, G.N.Y.A., Junus, K. and Santoso, H.B., 2022, October.
Gamification-Based Online Collaborative Learning Feature
Design on SoloLearn Application with
Mechanics-Dynamics-Aesthetics Framework and
User-Centered Design Method. In 2022 International
Conference on Advanced Computer Science and
Information Systems (ICACSIS) (pp. 65-74). IEEE.

[13] Amiguet, M., 2010. Teaching compilers with python.

[14]Mogensen, T.Æ., 2009. Basics of compiler design. Torben
Ægidius Mogensen.

[15] Mernik, M., Heering, J. and Sloane, A.M., 2005. When and
how to develop domain-specific languages. ACM
computing surveys (CSUR), 37(4), pp.316-344.

[16]Melton, J. and Simon, A.R., 1993. Understanding the new
SQL: a complete guide. Morgan Kaufmann.

[17] Raggett, D., Le Hors, A. and Jacobs, I., 1999. HTML 4.01
Specification. W3C recommendation, 24.

[18] Matlab, S., 2012. Matlab. The MathWorks, Natick, MA.

19[45]Lesk, M.E. and Schmidt, E. (1990) “Lex − A Lexical
Analyzer Generator.”

[20] Johnson, S.C., 1975. Yacc: Yet another
compiler-compiler(Vol. 32). Murray Hill, NJ: Bell
Laboratories.

[21] Levine, J., 2009. Flex & Bison: Text Processing Tools. "
O'Reilly Media, Inc.".

[22]Parr, T., 2013. The definitive ANTLR 4 reference. The
Definitive ANTLR 4 Reference, pp.1-326.



[23] Pech, V., Shatalin, A. and Voelter, M., 2013, September.
JetBrains MPS as a tool for extending Java. In Proceedings
of the 2013 International Conference on Principles and
Practices of Programming on the Java Platform: Virtual
Machines, Languages, and Tools (pp. 165-168)

[24] Campagne, F., 2014. The MPS language workbench: volume
I (Vol. 1). Fabien Campagne.

[25] Eysholdt, M. and Behrens, H., 2010, October. Xtext:
implement your language faster than the quick and dirty way. In
Proceedings of the ACM international conference companion on
Object oriented programming systems languages and applications
companion (pp. 307-309).

[26] Kundra, D. and Sureka, A. (2016) “An experience report on
teaching compiler design concepts using case-based and
project-based learning approaches,” 2016 IEEE Eighth
International Conference on Technology for Education (T4E)
[Preprint].

[27] Moreno‐Seco, F. and Forcada, M.L. (1996) “Learning
compiler design as a research activity,” Computer Science
Education, 7(1), pp. 73–98.

[28] Anderson, N. and Gegg-Harrison, T. (2013) “Learning
computer science in the ‘comfort zone of proximal
development,’” Proceeding of the 44th ACM technical symposium
on Computer science education [Preprint].

[29] Rakic, Z.S., Rakic, P. and Petric, T. (2014) “miniC Project for
Teaching Compilers Course,” ICIST 2014, 2.

[30] Shaffer, D., Doubé, W. and Tuovinen, J. (2003) “Applying
Cognitive load theory to computer science education,” Annual

Workshop of the Psychology of Programming Interest Group, pp.
333–346.

[31] Stanley, K., 2007. Design of randomized controlled trials.
Circulation, 115(9), pp.1164-1169.

[32] Caruana, E.J., Roman, M., Hernández-Sánchez, J. and Solli,
P., 2015. Longitudinal studies. Journal of thoracic disease,
7(11), p.E537


